QUOTE FOR FRIDAY:

“As yet, there is no complete cure for SMA. However, the discovery of the genetic cause of SMA has led to the development of several treatment options that affect the genes involved in SMA — a gene replacement therapy called Zolgensma, and two drugs, called nusinersen (Spinraza) and risdiplam (Evyrsdi).”

Boston Children’s Hospital (https://www.childrenshospital.org/conditions/spinal-muscular-atrophy-sma)

QUOTE FOR THURSDAY:

“There is a 1 in 4 chance the child has SMA, 1 in 4 chance the child inherited 2 healthy copies of the SMN1 gene and a 1 in 2 chance the child is a carrier.  While there’s no cure for SMA, treatment can help. Home modifications, medications, assistive devices, physical and occupational therapy, and feeding and breathing assistance are all things that can make living with SMA easier.”.

healthline (https://www.healthline.com/health/spinal-muscular-atrophy/spinal-muscular-atrophy-facts-stats#types-and-symptoms)

 

Part III Awareness of Spinal Muscular Atrophy (SMA)-Causes and diagnosing!

 

Causes of muscle atrophy

Unused muscles can waste away if you are not active. Even after it begins, this type of atrophy can often be reversed with exercise and improved nutrition.

Muscle atrophy can also happen if you are bedridden or unable to move certain body parts due to a medical condition. Astronauts, for example, can also experience some muscle atrophy after a few days of weightlessness.

Other causes for muscle atrophy include:

  • lack of physical activity for an extended period of time
  • aging
  • alcohol-associated myopathy, a pain and weakness in muscles due to excessive drinking over long periods of time
  • burns
  • injuries, such as a torn rotator cuff or broken bones
  • malnutrition
  • spinal cord or peripheral nerve injuries
  • stroke
  • long-term corticosteroid therapy

Diseases can cause muscles to waste away or can make movement difficult, leading to muscle atrophy. These include:

  • amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, affects nerve cells that control voluntary muscle movement
  • dermatomyositis, causes muscle weakness and skin rash
  • Guillain-Barré syndrome, an autoimmune disease that leads to nerve inflammation and muscle weakness
  • multiple sclerosis, an autoimmune disease in which the body destroys the protective coverings of nerves
  • muscular dystrophy, an inherited disease that causes muscle weakness
  • neuropathy, damage to a nerve or nerve group, resulting in loss of sensation or function
  • osteoarthritis, causes reduced motion in the joints
  • polio, a viral disease affecting muscle tissue that can lead to paralysis
  • polymyositis, an inflammatory disease
  • rheumatoid arthritis, a chronic inflammatory disease that affects the joints
  • spinal muscular atrophy, a hereditary disease causing arm and leg muscles to waste away

Causes of Spinal Muscular Atrophy:

It is caused by a loss of specialized nerve cells, called motor neurons that control muscle movement.  In this disease we have an insufficient amount of SMN protein, which leads to permanent loss of motor neurons (Destruction).  The weakness tends to be more severe in the muscles that are close to the center of the body (proximal) compared to muscles away from the body’s center (distal). The muscle weakness usually worsens with age.

SMA is an auto-somal recessive disease. This means that (most of the time) both parents must carry the genetic mutation for a child to have the condition.

The gene affected in SMA is the “survival of motor neuron” gene (SMN1 and SMN2). In 95 percent of SMA cases, both copies of the SMN1 gene are missing. All people with SMA have a number of copies of the SMN2 gene. But the SMN2 gene produces only a small amount of functional SMN protein; the more copies of the SMN2 gene a child has, the milder the disease.

If someone in your family has SMA, your chance of being an SMA carrier significantly increases. When both parents are carriers, there is a 1 in 4 (25 percent) chance with each pregnancy that they will have a child with SMA.

The SMA foundation states that the disease generally manifests early in life and is the leading genetic cause of death in infants and toddlers. … One in 40 to one in 50 people (approximately 6 million Americans) are carriers of the SMA gene.

Spinal muscular atrophy (SMA) affects 1 per 8,000 to 10,000 people worldwide. Spinal muscular atrophy type I is the most common type, accounting for about half of all cases. Types II and III are the next most common and types 0 and IV are rare.

Mutations in the SMN1 gene cause all types of spinal muscular atrophy described above. The number of copies of the SMN2 gene modifies the severity of the condition and helps determine which type develops.

The SMN1 and SMN2 genes both provide instructions for making a protein called the survival motor neuron (SMN) protein. Normally, most functional SMN protein is produced from the SMN1 gene, with a small amount produced from the SMN2 gene. Several different versions of the SMN protein are produced from the SMN2 gene, but only one version is functional; the other versions are smaller and quickly broken down. The SMN protein is one of a group of proteins called the SMN complex, which is important for the maintenance of motor neurons.  Motor neurons transmit signals from the brain and spinal cord that tell skeletal muscles to tense (contract), which allows the body to move.

Most people with spinal muscular atrophy are missing a piece of the SMN1 gene, which impairs SMN protein production. A shortage of SMN protein leads to motor neuron death, and as a result, signals are not transmitted between the brain and muscles. Muscles cannot contract without receiving signals from the brain, so many skeletal muscles become weak and waste away, leading to the signs and symptoms of spinal muscular atrophy.

Typically, people have two copies of the SMN1 gene and one to two copies of the SMN2 gene in each cell. However, the number of copies of the SMN2 gene varies, with some people having up to eight copies. In people with spinal muscular atrophy, having multiple copies of the SMN2 gene is usually associated with less severe features of the condition that develop later in life. The SMN protein produced by the SMN2 genes can help make up for the protein deficiency caused by SMN1 gene mutations. People with spinal muscular atrophy type 0 usually have one copy of the SMN2 gene in each cell, while those with type I generally have one or two copies, those with type II usually have three copies, those with type III have three or four copies, and those with type IV have four or more copies. Other factors, many unknown, also contribute to the variable severity of spinal muscular atrophy.

Spinal muscular atrophy is inherited in an autosomal recessive pattern, which means both copies of the SMN1 gene in each cell have mutations. In most cases, the parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. In rare cases, a person with spinal muscular atrophy inherits an SMN1 gene mutation from one parent and acquires a new mutation in the other copy of the gene that occurs during the formation of reproductive cells (eggs or sperm) or in early embryonic development. In these cases, only one parent is a carrier of the SMN1 gene mutation.

Individuals who have more than the usual two copies of the SMN2 gene usually do not inherit the extra copies from a parent. They typically arise during a random error when making new copies of DNA (replication) in an egg or sperm cell or just after fertilization.

Remember SMA is an autosomal recessive disease and this means that (most of the time) both parents must carry the genetic mutation for a child to have the condition.

The gene affected in SMA is the “survival of motor neuron” gene (SMN1 and SMN2). In 95 percent of SMA cases, both copies of the SMN1 gene are missing. All people with SMA have a number of copies of the SMN2 gene. But the SMN2 gene produces only a small amount of functional SMN protein; the more copies of the SMN2 gene a child has, the milder the disease.

If someone in your family has SMA, your chance of being an SMA carrier significantly increases. Remember when both parents are carriers, there is a 1 in 4 (25 percent) chance with each pregnancy that they will have a child with SMA.

Diagnosing: 

To find the cause of symptoms, your healthcare provider will perform a physical exam and get a medical history. Your physician may also order one or more of these tests to diagnose SMA:

  • Blood test: An enzyme and protein blood test can check for high levels of creatine kinase. Deteriorating muscles release this enzyme into the bloodstream.
  • Nerve conduction test: An electromyogram (EMG) measures the electrical activity of nerves muscles and nerves.
  • Muscle biopsy: Rarely, a physician may perform a muscle biopsy. This procedure involves removing a small amount of muscle tissue and sending it to a lab for examination. A biopsy can show atrophy, or loss of muscle.
  • Genetic test: This blood test identifies problems with the SMN1 gene. As a diagnostic tool, a genetic test is 95% effective at finding the altered SMN1 gene. Some states test for SMA as part of routine newborn screenings.

DNA testing is the preferred testing.

Genetic testing is a type of medical test that identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person’s chance of developing or passing on a genetic disorder. More than 1,000 genetic tests are currently in use, and more are being developed.

Several methods can be used for genetic testing:

  • Molecular genetic tests (or gene tests) study single genes or short lengths of DNA to identify variations or mutations that lead to a genetic disorder.
  • Chromosomal genetic tests analyze whole chromosomes or long lengths of DNA to see if there are large genetic changes, such as an extra copy of a chromosome, that cause a genetic condition.
  • Biochemical genetic tests study the amount or activity level of proteins; abnormalities in either can indicate changes to the DNA that result in a genetic disorder.

Genetic testing is voluntary. Because testing has benefits as well as limitations and risks, the decision about whether to be tested is a personal and complex one. A geneticist or genetic counselor can help by providing information about the pros and cons of the test and discussing the social and emotional aspects of testing.

Newborn Testing: To test if the routine newborn screening dried blood spots can be used to test if missing 2 copies of SMN1 gene, a status indicating spinal muscular atrophy.

QUOTE FOR WEDNESDAY:

“Those who might have gotten Skeletal Muscular Atrophy (SMA) are within the approximately 10,000 to 25,000 children and adults are living with SMA in the United States. It’s a rare disease that affects one out of 6,000 to 10,000 children.

A person with SMA inherits two copies of a missing or faulty (mutated) survival motor neuron 1 (SMN1) gene. One faulty gene comes from the mother and the other comes from the father. An adult can have a single copy of the defective gene that causes SMA and not know it.

About six million Americans (1 in 50) carry the mutated SMN1 gene. These carriers have one healthy SMN1 gene and one missing or defective SMN1 gene. Carriers don’t develop SMA. There’s a 1 in 4 chance that two carriers will have a child with SMA.”

Cleveland Clinic (https://my.clevelandclinic.org/health/diseases/14505-spinal-muscular-atrophy-sma)

 

QUOTE FOR TUESDAY:

What we need to know about spinal muscular atrophy (SMA):

  • Spinal muscular atrophy (SMA) is a disorder affecting the motor neurons—nerve cells that control voluntary muscle movement. These cells are located in the spinal cord.
  • Because the muscles cannot respond to signals from the nerves, they atrophy — weaken and shrink — from inactivity.
  • One in every 6,000 babies is born with SMA. It is one of the most prevalent genetic disorders affecting young children and a major cause of death in infancy.
  • SMA can strike children at any age. SMA in infancy and early childhood is associated with worse outcomes, while patients who develop symptoms later in childhood or in adolescence usually have a more positive prognosis.
  • SMA does not affect sensory nerves or intellect, but it has been observed that many patients with SMA are highly intelligent.

Part I Awareness of Spinal Muscular Atrophy (SMA)-What SMA is, staging of SMA & the types of MS atrophy there are?

What is Spinal Muscular Atrophy?

Spinal muscular atrophy is a genetic disorder characterized by weakness and wasting in muscles used for movement (skeletal muscles). It is caused by a loss of specialized nerve cells, called motor neurons that control muscle movement.  In this disease we have an insufficient amount of SMN protein, which leads to permanent loss of motor neurons (Destruction).  The weakness tends to be more severe in the muscles that are close to the center of the body (proximal) compared to muscles away from the body’s center (distal). The muscle weakness usually worsens with age. There are many types of spinal muscular atrophy that are caused by changes in the same genes. The types differ in age of onset and severity of muscle weakness; however, there is overlap between the types. Other forms of spinal muscular atrophy and related motor neuron diseases, such as spinal muscular atrophy with progressive myoclonic epilepsy, spinal muscular atrophy with lower extremity predominance, X-linked infantile spinal muscular atrophy, and spinal muscular atrophy with respiratory distress type 1 are caused by mutations in other genes.

Spinal muscular atrophy type 0 is evident before birth and is the rarest and most severe form of the condition. Affected infants move less in the womb, and as a result they are often born with joint deformities (contractures). They have extremely weak muscle tone (hypotonia) at birth. Their respiratory muscles are very weak and they often do not survive past infancy due to respiratory failure. Some infants with spinal muscular atrophy type 0 also have heart defects that are present from birth (congenital).

STAGING OF SPINAL MUSCULAR ATROPHY:

Spinal muscular atrophy type I (also called Werdnig-Hoffmann disease) is the most common form of the condition. It is a severe form of the disorder with muscle weakness evident at birth or within the first few months of life. Most affected children cannot control their head movements or sit unassisted. Children with this type may have swallowing problems that can lead to difficulty feeding and poor growth. They can also have breathing problems due to weakness of respiratory muscles and an abnormally bell-shaped chest that prevents the lungs from fully expanding. Most children with spinal muscular atrophy type I do not survive past early childhood due to respiratory failure.

Spinal muscular atrophy type II (also called Dubowitz disease) is characterized by muscle weakness that develops in children between ages 6 and 12 months. Children with this type can sit without support, although they may need help getting to a seated position. However, as the muscle weakness worsens later in childhood, affected individuals may need support to sit. Individuals with spinal muscular atrophy type II cannot stand or walk unaided. They often have involuntary trembling (tremors) in their fingers, a spine that curves side-to-side , and respiratory muscle weakness that can be life-threatening. The life span of individuals with spinal muscular atrophy type II varies, but many people with this condition live into their twenties or thirties.

Spinal muscular atrophy type III (also called Kugelberg-Welander disease) typically causes muscle weakness after early childhood. Individuals with this condition can stand and walk unaided, but over time, walking and climbing stairs may become increasingly difficult. Many affected individuals require wheelchair assistance later in life. People with spinal muscular atrophy type III typically have a normal life expectancy.

Spinal muscular atrophy type IV is rare and often begins in early adulthood. Affected individuals usually experience mild to moderate muscle weakness, tremors, and mild breathing problems. People with spinal muscular atrophy type IV have a normal life expectancy.

JOHN HOPKINS MEDICINE states these types of SMA:

Type Age at onset Symptoms, rate of progression, and life expectancy
Becker adolescence to early adulthood Symptoms are almost identical to Duchenne, but less severe; progresses more slowly than Duchenne; survival into middle age. As with Duchenne, disease is almost always limited to males.
Congenital birth Symptoms include general muscle weakness and possible joint deformities; disease progresses slowly; shortened life span.
Duchenne 2 to 6 years Symptoms include general muscle weakness and wasting; affects pelvis, upper arms, and upper legs; eventually involves all voluntary muscles; survival beyond 20s is rare. Seen in boys only. Very rarely can affect woman, who have much milder symptoms and a better prognosis.
Distal 40 to 60 years Symptoms include weakness and wasting of muscles of the hands, forearms, and lower legs; progression is slow; rarely leads to total incapacity.
Emery-Dreifuss childhood to early teens Symptoms include weakness and wasting of shoulder, upper arm, and shin muscles; joint deformities are common; progression is slow; sudden death may occur from cardiac problems.
Facioscapulohumeral childhood to early adults Symptoms include facial muscle weakness and weakness with some wasting of shoulders and upper arms; progression is slow with periods of rapid deterioration; life span may be many decades after onset.
Limb-Girdle late childhood to middle age Symptoms include weakness and wasting, affecting shoulder girdle and pelvic girdle first; progression is slow; death is usually due to cardiopulmonary complications.
Myotonic 20 to 40 years Symptoms include weakness of all muscle groups accompanied by delayed relaxation of muscles after contraction; affects face, feet, hands, and neck first; progression is slow, sometimes spanning 50 to 60 years.
Oculopharyngeal 40 to 70 years Symptoms affect muscles of eyelids and throat causing weakening of throat muscles, which, in time, causes inability to swallow and emaciation from lack of food; progression is slow.

QUOTE FOR MONDAY:

“Give your eyes a break.

Do you spend a lot of time looking at a computer, phone, or TV screen? Staring at any one thing for too long can tire your eyes. Give your eyes a rest with the 20-20-20 rule: Every 20 minutes, look about 20 feet away for 20 seconds.

Speak up if your vision changes.

Is your vision blurry? Do you squint a lot? Ever have trouble seeing things at school? Tell a parent or teacher if your eyes are bothering you or if you notice any changes in your vision.

Eat right to protect your sight.

Keep your eyes healthy by eating a well-balanced diet. Load up on different types of fruits and veggies, especially leafy greens like spinach, kale, and collard greens. Fish like salmon, tuna, and halibut have been shown to help your eyes, too.

NIH National Eye Institute (https://www.nei.nih.gov/learn-about-eye-health/nei-for-kids/healthy-vision-tips)

QUOTE FOR THE WEEKEND:

“Amyotrophic lateral sclerosis is a fatal type of motor neuron disease. It is characterized by progressive degeneration of nerve cells in the spinal cord and brain. It’s often called Lou Gehrig’s disease, after a famous baseball player who died from the disease. ALS it is one of the most devastating of the disorders that affects the function of nerves and muscles.”

John Hopkins Medicine (https://www.hopkinsmedicine.org/health/conditions-and-diseases/amyotrophic-lateral-sclerosis-als)

Lou Gehrigs Disease=Amyotrophic lateral sclerosis

                              lou gerig disease2

                          lougerigdisease3                                 lougerigdisease1

What is Lou Gehrig’s Disease (also called ALS or amyotrophic lateral sclerosis) exactly?

ALS, or amyotrophic lateral sclerosis, is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. A-myo-trophic comes from the Greek language. “A” means no. “Myo” refers to muscle, and “Trophic” means nourishment – “No muscle nourishment.” When a muscle has no nourishment, it “atrophies” or wastes away. “Lateral” identifies the areas in a person’s spinal cord where portions of the nerve cells that signal and control the muscles are located. As this area degenerates it leads to scarring or hardening (“sclerosis”) in the region.

Motor neurons reach from the brain to the spinal cord and from the spinal cord to the muscles throughout the body. The progressive degeneration of the motor neurons in ALS eventually leads to their demise. When the motor neurons die, the ability of the brain to initiate and control muscle movement is lost. With voluntary muscle action progressively affected, people may lose the ability to speak, eat, move and breathe. The motor nerves that are affected when you have ALS are the motor neurons that provide voluntary movements and muscle control. Examples of voluntary movements are making the effort to reach for a smart phone or step off a curb. These actions are controlled by the muscles in the arms and legs. Motor neurons are nerve cells located in the brain, brain stem, and spinal cord that serve as controlling units and vital communication links between the nervous system and the voluntary muscles of the body. Messages from motor neurons in the brain called upper motor neurons are transmitted to motor neurons in the spinal cord which are lower motor neurons and from them to particular muscles. The problem with ACL, both the upper motor niurons and the ower motor niurons degenerate or die which causes stoppage of sending messages to muscles. Unable to function, the muscles gradually weaken, waste away (atrophy), and have very fine twitches (called fasciculations). Eventually, the ability of the brain to start voluntary movement with messages is unable to work anymore.

Symptoms:

The onset of ALS may be so subtle that the symptoms are overlooked. The earliest symptoms may include fasciculations, cramps, tight and stiff muscles (spasticity), muscle weakness affecting an arm or a leg, slurred and nasal speech, or difficulty chewing or swallowing. These general complaints then develop into more obvious weakness or atrophy that may cause a physician to suspect ALS. Regardless of the part of the body first affected by the disease, muscle weakness and atrophy spread to other parts of the body as the disease progresses.

The parts of the body showing early symptoms of ALS depend on which muscles in the body are affected. Many individuals first see the effects of the disease in a hand or arm as they experience difficulty with simple tasks requiring manual dexterity such as buttoning a shirt, writing, or turning a key in a lock. In other cases, symptoms initially affect one of the legs, and people experience awkwardness when walking or running or they notice that they are tripping or stumbling more often.

There are two different types of ALS, 1 sporadic and 2 familial.

Sporadic which is the most common form of the disease in the U.S., is 90 – 95 percent of all cases. It may affect anyone, anywhere.

Familial ALS (FALS) accounts for 5 to 10 percent of all cases in the U.S. Familial ALS means the disease is inherited. In those families, there is a 50% chance each offspring will inherit the gene mutation and may develop the disease. French neurologist Jean-Martin Charcot discovered the disease in 1869.

Causes of ALS:

The cause of ALS is not known, and scientists do not yet know why ALS strikes some people and not others. An important step toward answering this question was made in 1993 when scientists supported by the National Institute of Neurological Disorders and Stroke (NINDS) discovered that mutations in the gene that produces the SOD1 enzyme were associated with some cases of familial ALS.

ALS usually strikes people between the ages of 40 and 70, and approximately 20,000 Americans can have the disease at any given time (although this number fluctuates). For unknown reasons, military veterans are approximately twice as likely to be diagnosed with the disease than the general public.  Notable individuals who have been diagnosed with ALS include baseball great Lou Gehrig, Hall of Fame pitcher Jim “Catfish” Hunter, Toto bassist Mike Porcaro, Senator Jacob Javits, actor David Niven, “Sesame Street” creator Jon Stone, boxing champion Ezzard Charles, NBA Hall of Fame basketball player George Yardley, golf caddie Bruce Edwards, , musician Lead Belly (Huddie Ledbetter), photographer Eddie Adams, entertainer Dennis Day, jazz musician Charles Mingus, former vice president of the United States Henry A. Wallace, U.S. Army General Maxwell Taylor, and NFL football players Steve Gleason, O.J. Brigance and Tim Shaw.

Who gets ALS?

More than 12,000 people in the U.S. have a definite diagnosis of ALS, for a prevalence of 3.9 cases per 100,000 persons in the U.S. general population, according to a report on data from the National ALS Registry. ALS is one of the most common neuromuscular diseases worldwide, and people of all races and ethnic backgrounds are affected. ALS is more common among white males, non-Hispanics, and persons aged 60–69 years, but younger and older people also can develop the disease. Men are affected more often than women.

In 90 to 95 percent of all ALS cases, the disease occurs apparently at random with no clearly associated risk factors. Individuals with this sporadic form of the disease do not have a family history of ALS, and their family members are not considered to be at increased risk for developing it.

About 5 to 10 percent of all ALS cases are inherited. The familial form of ALS usually results from a pattern of inheritance that requires only one parent to carry the gene responsible for the disease. Mutations in more than a dozen genes have been found to cause familial ALS.

About one-third of all familial cases (and a small percentage of sporadic cases) result from a defect in a gene known as “chromosome 9 open reading frame 72,” or C9orf72. The function of this gene is still unknown. Another 20 percent of familial cases result from mutations in the gene that encodes the enzyme copper-zinc superoxide dismutase 1 (SOD1).

Treatments to this disease:

Recent years have brought a wealth of new scientific understanding regarding the physiology of this disease. There is currently one FDA approved drug, riluzole, that modestly slows the progression of ALS in some people. Although there is not yet a cure or treatment that halts or reverses ALS, scientists have made significant progress in learning more about this disease. In addition, people with ALS may experience a better quality of life in living with the disease by participating in support groups and attending an ALS Association Certified Treatment Center of Excellence or a Recognized Treatment Center. Such Centers provide a national standard of best-practice multidisciplinary care to help manage the symptoms of the disease and assist people living with ALS to maintain as much independence as possible for as long as possible. According to the American Academy of Neurology’s Practice Paramater Update, studies have shown that participation in a multidisciplinary ALS clinic may prolong survival and improve quality of life.

To find a Center near you, visit http://www.alsa.org/community/certified-centers/.

Remember there is no cure yet that has been found for ALS. However, the Food and Drug Administration (FDA) approved the first drug treatment for the disease—riluzole (Rilutek)—in 1995. Riluzole is believed to reduce damage to motor neurons by decreasing the release of glutamate. Clinical trials with ALS patients showed that riluzole prolongs survival by several months, mainly in those with difficulty swallowing. The drug also extends the time before an individual needs ventilation support. Riluzole does not reverse the damage already done to motor neurons, and persons taking the drug must be monitored for liver damage and other possible side effects. However, this first disease-specific therapy offers hope that the progression of ALS may one day be slowed by new medications or combinations of drugs.

 

QUOTE FOR FRIDAY:

Breast milk is the primary source for all their nutritional needs in the initial few months of an infant’s life, as it comprises 87% water, 7% carbohydrate, 4% lipid and 1% protein, vitamins, and other minerals (calcium, phosphorus, magnesium, potassium, sodium, etc). Appropriate breastfeeding equipped with both maternal and child benefits that include prevention of child from severe diseases (short- and long-term diseases) such as: 

  • Respiratory problems (such as respiratory distress syndrome, bronchopulmonary dysplasia, etc.)
  • Sudden infant death syndrome (unexplained, sudden, and unexpected death of a healthy baby, also called cot death)
  • Diarrhoea, leading to quick dehydration
  • Necrotising enterocolitis (a serious gastrointestinal issue affecting premature babies)
  • Otitis media (infection of the middle ear)
  • Obesity (excess fat)
  • Type 1 Diabetes (little or no insulin production, resulting in excess blood sugar)

PACE Hospitals (https://www.pacehospital.com/world-breastfeeding-week-01-07-august)